skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mishra, Shruti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The impact of a liquid drop on a solid surface involves many intertwined physical effects, and is influenced by drop velocity, surface tension, ambient pressure and liquid viscosity, among others. Experiments by Kolinski et al. ( Phys. Rev. Lett. , vol. 112, no. 13, 2014 b , p. 134501) show that the liquid–air interface begins to deviate away from the solid surface even before contact. They found that the lift-off of the interface starts at a critical time that scales with the square root of the kinematic viscosity of the liquid. To understand this, we study the approach of a liquid drop towards a solid surface in the presence of an intervening gas layer. We take a numerical approach to solve the Navier–Stokes equations for the liquid, coupled to the compressible lubrication equations for the gas, in two dimensions. With this approach, we recover the experimentally captured early time effect of liquid viscosity on the drop impact, but our results show that lift-off time and liquid kinematic viscosity have a more complex dependence than the square-root scaling relationship. We also predict the effect of interfacial tension at the liquid–gas interface on the drop impact, showing that it mediates the lift-off behaviour. 
    more » « less
  2. Rectilinear crawling locomotion is a primitive and common mode of locomotion in slender soft-bodied animals. It requires coordinated contractions that propagate along a body that interacts frictionally with its environment. We propose a simple approach to understand how this coordination arises in a neuromechanical model of a segmented, soft-bodied crawler via an iterative process that might have both biological antecedents and technological relevance. Using a simple reinforcement learning algorithm, we show that an initial all-to-all neural coupling converges to a simple nearest-neighbour neural wiring that allows the crawler to move forward using a localized wave of contraction that is qualitatively similar to what is observed in Drosophila melanogaster larvae and used in many biomimetic solutions. The resulting solution is a function of how we weight gait regularization in the reward, with a trade-off between speed and robustness to proprioceptive noise. Overall, our results, which embed the brain–body–environment triad in a learning scheme, have relevance for soft robotics while shedding light on the evolution and development of locomotion. 
    more » « less